Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
Add more filters










Publication year range
1.
ISME Commun ; 4(1): ycae040, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38628812

ABSTRACT

Seawater intrusion into freshwater wetlands causes changes in microbial communities and biogeochemistry, but the exact mechanisms driving these changes remain unclear. Here we use a manipulative laboratory microcosm experiment, combined with DNA sequencing and biogeochemical measurements, to tease apart the effects of sulfate from other seawater ions. We examined changes in microbial taxonomy and function as well as emissions of carbon dioxide, methane, and nitrous oxide in response to changes in ion concentrations. Greenhouse gas emissions and microbial richness and composition were altered by artificial seawater regardless of whether sulfate was present, whereas sulfate alone did not alter emissions or communities. Surprisingly, addition of sulfate alone did not lead to increases in the abundance of sulfate reducing bacteria or sulfur cycling genes. Similarly, genes involved in carbon, nitrogen, and phosphorus cycling responded more strongly to artificial seawater than to sulfate. These results suggest that other ions present in seawater, not sulfate, drive ecological and biogeochemical responses to seawater intrusion and may be drivers of increased methane emissions in soils that received artificial seawater addition. A better understanding of how the different components of salt water alter microbial community composition and function is necessary to forecast the consequences of coastal wetland salinization.

3.
mSystems ; 9(1): e0093623, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38170982

ABSTRACT

Estuarine wetlands harbor considerable carbon stocks, but rising sea levels could affect their ability to sequester soil carbon as well as their potential to emit methane (CH4). While sulfate loading from seawater intrusion may reduce CH4 production due to the higher energy yield of microbial sulfate reduction, existing studies suggest other factors are likely at play. Our study of 11 wetland complexes spanning a natural salinity and productivity gradient across the San Francisco Bay and Delta found that while CH4 fluxes generally declined with salinity, they were highest in oligohaline wetlands (ca. 3-ppt salinity). Methanogens and methanogenesis genes were weakly correlated with CH4 fluxes but alone did not explain the highest rates observed. Taxonomic and functional gene data suggested that other microbial guilds that influence carbon and nitrogen cycling need to be accounted for to better predict CH4 fluxes at landscape scales. Higher methane production occurring near the freshwater boundary with slight salinization (and sulfate incursion) might result from increased sulfate-reducing fermenter and syntrophic populations, which can produce substrates used by methanogens. Moreover, higher salinities can solubilize ionically bound ammonium abundant in the lower salinity wetland soils examined here, which could inhibit methanotrophs and potentially contribute to greater CH4 fluxes observed in oligohaline sediments.IMPORTANCELow-level salinity intrusion could increase CH4 flux in tidal freshwater wetlands, while higher levels of salinization might instead decrease CH4 fluxes. High CH4 emissions in oligohaline sites are concerning because seawater intrusion will cause tidal freshwater wetlands to become oligohaline. Methanogenesis genes alone did not account for landscape patterns of CH4 fluxes, suggesting mechanisms altering methanogenesis, methanotrophy, nitrogen cycling, and ammonium release, and increasing decomposition and syntrophic bacterial populations could contribute to increases in net CH4 flux at oligohaline salinities. Improved understanding of these influences on net CH4 emissions could improve restoration efforts and accounting of carbon sequestration in estuarine wetlands. More pristine reference sites may have older and more abundant organic matter with higher carbon:nitrogen compared to wetlands impacted by agricultural activity and may present different interactions between salinity and CH4. This distinction might be critical for modeling efforts to scale up biogeochemical process interactions in estuarine wetlands.


Subject(s)
Ammonium Compounds , Wetlands , Soil/chemistry , Methane/metabolism , Salinity , Carbon/metabolism , Nitrogen , Sulfates
4.
mSystems ; 9(1): e0119023, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38132569

ABSTRACT

The development of cereal crops with high nitrogen use efficiency (NUE) is a priority for worldwide agriculture. In addition to conventional plant breeding and genetic engineering, the use of the plant microbiome offers another approach to improving crop NUE. To gain insight into the bacterial communities associated with sorghum lines that differ in NUE, a field experiment was designed comparing 24 diverse Sorghum bicolor lines under sufficient and deficient nitrogen (N). Amplicon sequencing and untargeted gas chromatography-mass spectrometry were used to characterize the bacterial communities and the root metabolome associated with sorghum genotypes varying in sensitivity to low N. We demonstrated that N stress and sorghum type (energy, sweet, and grain sorghum) significantly impacted the root-associated bacterial communities and root metabolite composition of sorghum. We found a positive correlation between sorghum NUE and bacterial richness and diversity in the rhizosphere. The greater alpha diversity in high NUE lines was associated with the decreased abundance of a dominant bacterial taxon, Pseudomonas. Multiple strong correlations were detected between root metabolites and rhizosphere bacterial communities in response to low N stress. This indicates that the shift in the sorghum microbiome due to low N is associated with the root metabolites of the host plant. Taken together, our findings suggest that host genetic regulation of root metabolites plays a role in defining the root-associated microbiome of sorghum genotypes differing in NUE and tolerance to low N stress.IMPORTANCEThe development of crops that are more nitrogen use-efficient (NUE) is critical for the future of the enhanced sustainability of agriculture worldwide. This objective has been pursued mainly through plant breeding and plant molecular engineering, but these approaches have had only limited success. Therefore, a different strategy that leverages soil microbes needs to be fully explored because it is known that soil microbes improve plant growth through multiple mechanisms. To design approaches that use the soil microbiome to increase NUE, it will first be essential to understand the relationship among soil microbes, root metabolites, and crop productivity. Using this approach, we demonstrated that certain key metabolites and specific microbes are associated with high and low sorghum NUE in a field study. This important information provides a new path forward for developing crop genotypes that have increased NUE through the positive contribution of soil microbes.


Subject(s)
Sorghum , Sorghum/genetics , Edible Grain/chemistry , Nitrogen/analysis , Plant Breeding , Soil/chemistry , Crops, Agricultural/metabolism
5.
New Phytol ; 240(3): 1246-1258, 2023 11.
Article in English | MEDLINE | ID: mdl-37668195

ABSTRACT

Biocrusts are phototroph-driven communities inhabiting arid soil surfaces. Like plants, most photoautotrophs (largely cyanobacteria) in biocrusts are thought to exchange fixed carbon for essential nutrients like nitrogen with cyanosphere bacteria. Here, we aim to compare beneficial interactions in rhizosphere and cyanosphere environments, including finding growth-promoting strains for hosts from both environments. To examine this, we performed a retrospective analysis of 16S rRNA gene sequencing datasets, host-microbe co-culture experiments between biocrust communities/biocrust isolates and a model grass (Brachypodium distachyon) or a dominant biocrust cyanobacterium (Microcoleus vaginatus), and metabolomic analysis. All 18 microbial phyla in the cyanosphere were also present in the rhizosphere, with additional 17 phyla uniquely found in the rhizosphere. The biocrust microbes promoted the growth of the model grass, and three biocrust isolates (Bosea sp._L1B56, Pseudarthrobacter sp._L1D14 and Pseudarthrobacter picheli_L1D33) significantly promoted the growth of both hosts. Moreover, pantothenic acid was produced by Pseudarthrobacter sp._L1D14 when grown on B. distachyon exudates, and supplementation of plant growth medium with this metabolite increased B. distachyon biomass by over 60%. These findings suggest that cyanobacteria and other diverse photoautotrophic hosts can be a source for new plant growth-promoting microbes and metabolites.


Subject(s)
Plants , Rhizosphere , RNA, Ribosomal, 16S/genetics , Retrospective Studies , Biomass , Soil , Soil Microbiology
7.
Data Brief ; 47: 108990, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36879606

ABSTRACT

This article presents metagenome-assembled genomes (MAGs) for both eukaryotic and prokaryotic organisms originating from the Arctic and Atlantic oceans, along with gene prediction and functional annotation for MAGs from both domains. Eleven samples from the chlorophyll-a maximum layer of the surface ocean were collected during two cruises in 2012; six from the Arctic in June-July on ARK-XXVII/1 (PS80), and five from the Atlantic in November on ANT-XXIX/1 (PS81). Sequencing and assembly was carried out by the Joint Genome Institute (JGI), who provide annotation of the assembled sequences, and 122 MAGs for prokaryotic organisms. A subsequent binning process identified 21 MAGs for eukaryotic organisms, mostly identified as Mamiellophyceae or Bacillariophyceae. The data for each MAG includes sequences in FASTA format, and tables of functional annotation of genes. For eukaryotic MAGs, transcript and protein sequences for predicted genes are available. A spreadsheet is provided summarising quality measures and taxonomic classifications for each MAG. These data provide draft genomes for uncultured marine microbes, including some of the first MAGs for polar eukaryotes, and can provide reference genetic data for these environments, or used in genomics-based comparison between environments.

8.
Microbiol Mol Biol Rev ; 87(1): e0002422, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36692297

ABSTRACT

Methyl-based methanogenesis is one of three broad categories of archaeal anaerobic methanogenesis, including both the methyl dismutation (methylotrophic) pathway and the methyl-reducing (also known as hydrogen-dependent methylotrophic) pathway. Methyl-based methanogenesis is increasingly recognized as an important source of methane in a variety of environments. Here, we provide an overview of methyl-based methanogenesis research, including the conditions under which methyl-based methanogenesis can be a dominant source of methane emissions, experimental methods for distinguishing different pathways of methane production, molecular details of the biochemical pathways involved, and the genes and organisms involved in these processes. We also identify the current gaps in knowledge and present a genomic and metagenomic survey of methyl-based methanogenesis genes, highlighting the diversity of methyl-based methanogens at multiple taxonomic levels and the widespread distribution of known methyl-based methanogenesis genes and families across different environments.


Subject(s)
Archaea , Euryarchaeota , Humans , Archaea/genetics , Archaea/metabolism , Methane/metabolism , Euryarchaeota/genetics , Euryarchaeota/metabolism , Metagenomics
9.
Microbiol Resour Announc ; 11(11): e0076122, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36301089

ABSTRACT

Here, we report the draft genome sequence of the siderophilic cyanobacterium Fischerella thermalis JSC-11, which was isolated from an iron-depositing hot spring. JSC-11 has bioremediation potential because it is capable of both extracellular absorption and intracellular mineralization of colloidal iron. This genomic information will facilitate the exploration of JSC-11 for bioremediation.

10.
Microbiol Resour Announc ; 11(8): e0052822, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35862923

ABSTRACT

Here, we report 36 active-layer and 17 permafrost metagenomes from Utqiagvik, AK, USA. Samples were collected from different topographical features and depths to study Arctic tundra microbiomes.

11.
ISME J ; 16(8): 1957-1969, 2022 08.
Article in English | MEDLINE | ID: mdl-35523959

ABSTRACT

Drought is a major abiotic stress limiting agricultural productivity. Previous field-level experiments have demonstrated that drought decreases microbiome diversity in the root and rhizosphere. How these changes ultimately affect plant health remains elusive. Toward this end, we combined reductionist, transitional and ecological approaches, applied to the staple cereal crop sorghum to identify key root-associated microbes that robustly affect drought-stressed plant phenotypes. Fifty-three Arabidopsis-associated bacteria were applied to sorghum seeds and their effect on root growth was monitored. Two Arthrobacter strains caused root growth inhibition (RGI) in Arabidopsis and sorghum. In the context of synthetic communities, Variovorax strains were able to protect plants from Arthrobacter-caused RGI. As a transitional system, high-throughput phenotyping was used to test the synthetic communities. During drought stress, plants colonized by Arthrobacter had reduced growth and leaf water content. Plants colonized by both Arthrobacter and Variovorax performed as well or better than control plants. In parallel, we performed a field trial wherein sorghum was evaluated across drought conditions. By incorporating data on soil properties into the microbiome analysis, we accounted for experimental noise with a novel method and were able to observe the negative correlation between the abundance of Arthrobacter and plant growth. Having validated this approach, we cross-referenced datasets from the high-throughput phenotyping and field experiments and report a list of bacteria with high confidence that positively associated with plant growth under drought stress. In conclusion, a three-tiered experimental system successfully spanned the lab-to-field gap and identified beneficial and deleterious bacterial strains for sorghum under drought.


Subject(s)
Arabidopsis , Microbiota , Sorghum , Bacteria/genetics , Droughts , Edible Grain , Plant Roots/microbiology , Sorghum/microbiology
12.
Nat Rev Microbiol ; 20(7): 383, 2022 07.
Article in English | MEDLINE | ID: mdl-35581476
13.
Microbiome ; 10(1): 67, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484634

ABSTRACT

BACKGROUND: Phytoplankton communities significantly contribute to global biogeochemical cycles of elements and underpin marine food webs. Although their uncultured genomic diversity has been estimated by planetary-scale metagenome sequencing and subsequent reconstruction of metagenome-assembled genomes (MAGs), this approach has yet to be applied for complex phytoplankton microbiomes from polar and non-polar oceans consisting of microbial eukaryotes and their associated prokaryotes. RESULTS: Here, we have assembled MAGs from chlorophyll a maximum layers in the surface of the Arctic and Atlantic Oceans enriched for species associations (microbiomes) with a focus on pico- and nanophytoplankton and their associated heterotrophic prokaryotes. From 679 Gbp and estimated 50 million genes in total, we recovered 143 MAGs of medium to high quality. Although there was a strict demarcation between Arctic and Atlantic MAGs, adjacent sampling stations in each ocean had 51-88% MAGs in common with most species associations between Prasinophytes and Proteobacteria. Phylogenetic placement revealed eukaryotic MAGs to be more diverse in the Arctic whereas prokaryotic MAGs were more diverse in the Atlantic Ocean. Approximately 70% of protein families were shared between Arctic and Atlantic MAGs for both prokaryotes and eukaryotes. However, eukaryotic MAGs had more protein families unique to the Arctic whereas prokaryotic MAGs had more families unique to the Atlantic. CONCLUSION: Our study provides a genomic context to complex phytoplankton microbiomes to reveal that their community structure was likely driven by significant differences in environmental conditions between the polar Arctic and warm surface waters of the tropical and subtropical Atlantic Ocean. Video Abstract.


Subject(s)
Metagenome , Microbiota , Atlantic Ocean , Chlorophyll A , Eukaryota/genetics , Metagenome/genetics , Microbiota/genetics , Phylogeny , Phytoplankton/genetics
15.
Biochem J ; 479(3): 327-335, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35119455

ABSTRACT

Plants benefit from their close association with soil microbes which assist in their response to abiotic and biotic stressors. Yet much of what we know about plant stress responses is based on studies where the microbial partners were uncontrolled and unknown. Under climate change, the soil microbial community will also be sensitive to and respond to abiotic and biotic stressors. Thus, facilitating plant adaptation to climate change will require a systems-based approach that accounts for the multi-dimensional nature of plant-microbe-environment interactions. In this perspective, we highlight some of the key factors influencing plant-microbe interactions under stress as well as new tools to facilitate the controlled study of their molecular complexity, such as fabricated ecosystems and synthetic communities. When paired with genomic and biochemical methods, these tools provide researchers with more precision, reproducibility, and manipulability for exploring plant-microbe-environment interactions under a changing climate.


Subject(s)
Adaptation, Physiological/physiology , Bacteria/metabolism , Climate Change , Fungi/metabolism , Host Microbial Interactions/physiology , Plants/metabolism , Plants/microbiology , Symbiosis/physiology , Ecosystem , Microbiota , Soil Microbiology , Stress, Physiological
16.
Genes (Basel) ; 13(1)2022 01 15.
Article in English | MEDLINE | ID: mdl-35052488

ABSTRACT

Aerobic bacteria that degrade methylphosphonates and produce methane as a byproduct have emerged as key players in marine carbon and phosphorus cycles. Here, we present two new draft genome sequences of the genus Marivita that were assembled from metagenomes from hypersaline former industrial salterns and compare them to five other Marivita reference genomes. Phylogenetic analyses suggest that both of these metagenome-assembled genomes (MAGs) represent new species in the genus. Average nucleotide identities to the closest taxon were <85%. The MAGs were assembled with SPAdes, binned with MetaBAT, and curated with scaffold extension and reassembly. Both genomes contained the phnCDEGHIJLMP suite of genes encoding the full C-P lyase pathway of methylphosphonate degradation and were significantly more abundant in two former industrial salterns than in nearby reference and restored wetlands, which have lower salinity levels and lower methane emissions than the salterns. These organisms contain a variety of compatible solute biosynthesis and transporter genes to cope with high salinity levels but harbor only slightly acidic proteomes (mean isoelectric point of 6.48).


Subject(s)
Metagenome , Methane/metabolism , Organophosphorus Compounds/metabolism , Rhodobacteraceae/genetics , Saline Waters/chemistry , Salinity , Salt Tolerance , Rhodobacteraceae/classification , Rhodobacteraceae/isolation & purification , Saline Waters/analysis
17.
ISME J ; 16(1): 284-295, 2022 01.
Article in English | MEDLINE | ID: mdl-34321618

ABSTRACT

Wetlands are important carbon (C) sinks, yet many have been destroyed and converted to other uses over the past few centuries, including industrial salt making. A renewed focus on wetland ecosystem services (e.g., flood control, and habitat) has resulted in numerous restoration efforts whose effect on microbial communities is largely unexplored. We investigated the impact of restoration on microbial community composition, metabolic functional potential, and methane flux by analyzing sediment cores from two unrestored former industrial salt ponds, a restored former industrial salt pond, and a reference wetland. We observed elevated methane emissions from unrestored salt ponds compared to the restored and reference wetlands, which was positively correlated with salinity and sulfate across all samples. 16S rRNA gene amplicon and shotgun metagenomic data revealed that the restored salt pond harbored communities more phylogenetically and functionally similar to the reference wetland than to unrestored ponds. Archaeal methanogenesis genes were positively correlated with methane flux, as were genes encoding enzymes for bacterial methylphosphonate degradation, suggesting methane is generated both from bacterial methylphosphonate degradation and archaeal methanogenesis in these sites. These observations demonstrate that restoration effectively converted industrial salt pond microbial communities back to compositions more similar to reference wetlands and lowered salinities, sulfate concentrations, and methane emissions.


Subject(s)
Methane , Microbiota , Methane/metabolism , Ponds , RNA, Ribosomal, 16S/genetics , Wetlands
18.
Genes (Basel) ; 12(10)2021 10 13.
Article in English | MEDLINE | ID: mdl-34681003

ABSTRACT

Anaerobic archaeal methanogens are key players in the global carbon cycle due to their role in the final stages of organic matter decomposition in anaerobic environments such as wetland sediments. Here we present the first draft metagenome-assembled genome (MAG) sequence of an unclassified Methanosarcinaceae methanogen phylogenetically placed adjacent to the Methanolobus and Methanomethylovorans genera that appears to be a distinct genus and species. The genome is derived from sediments of a hypersaline (97-148 ppt chloride) unrestored industrial saltern that has been observed to be a significant methane source. The source sediment is more saline than previous sources of Methanolobus and Methanomethylovorans. We propose a new genus name, Methanosalis, to house this genome, which we designate with the strain name SBSPR1A. The MAG was binned with CONCOCT and then improved via scaffold extension and reassembly. The genome contains pathways for methylotrophic methanogenesis from trimethylamine and dimethylamine, as well as genes for the synthesis and transport of compatible solutes. Some genes involved in acetoclastic and hydrogenotrophic methanogenesis are present, but those pathways appear incomplete in the genome. The MAG was more abundant in two former industrial salterns than in a nearby reference wetland and a restored wetland, both of which have much lower salinity levels, as well as significantly lower methane emissions than the salterns.


Subject(s)
Archaea/genetics , Ecosystem , Metagenome/genetics , Salt Tolerance/genetics , Archaea/metabolism , Euryarchaeota/genetics , Methane/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Salinity , Wetlands
19.
Nat Commun ; 12(1): 5483, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34531387

ABSTRACT

Eukaryotic phytoplankton are responsible for at least 20% of annual global carbon fixation. Their diversity and activity are shaped by interactions with prokaryotes as part of complex microbiomes. Although differences in their local species diversity have been estimated, we still have a limited understanding of environmental conditions responsible for compositional differences between local species communities on a large scale from pole to pole. Here, we show, based on pole-to-pole phytoplankton metatranscriptomes and microbial rDNA sequencing, that environmental differences between polar and non-polar upper oceans most strongly impact the large-scale spatial pattern of biodiversity and gene activity in algal microbiomes. The geographic differentiation of co-occurring microbes in algal microbiomes can be well explained by the latitudinal temperature gradient and associated break points in their beta diversity, with an average breakpoint at 14 °C ± 4.3, separating cold and warm upper oceans. As global warming impacts upper ocean temperatures, we project that break points of beta diversity move markedly pole-wards. Hence, abrupt regime shifts in algal microbiomes could be caused by anthropogenic climate change.


Subject(s)
Genetic Variation , Microalgae/genetics , Microbiota/genetics , Phytoplankton/genetics , Transcriptome/genetics , Antarctic Regions , Arctic Regions , Biodiversity , Carbon Cycle , Climate Change , Gene Ontology , Geography , Global Warming , Microalgae/classification , Microalgae/growth & development , Oceans and Seas , Phytoplankton/classification , Phytoplankton/growth & development , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA/methods , Species Specificity , Temperature
20.
J Environ Manage ; 299: 113562, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34425499

ABSTRACT

The concentration of nitrous oxide (N2O), an ozone-depleting greenhouse gas, is rapidly increasing in the atmosphere. Most atmospheric N2O originates in terrestrial ecosystems, of which the majority can be attributed to microbial cycling of nitrogen in agricultural soils. Here, we demonstrate how the abundance of nitrogen cycling genes vary across intensively managed agricultural fields and adjacent restored wetlands in the Sacramento-San Joaquin Delta in California, USA. We found that the abundances of nirS and nirK genes were highest at the intensively managed organic-rich cornfield and significantly outnumber any other gene abundances, suggesting very high N2O production potential. The quantity of nitrogen transforming genes, particularly those responsible for denitrification, nitrification and DNRA, were highest in the agricultural sites, whereas nitrogen fixation and ANAMMOX was strongly associated with the wetland sites. Although the abundance of nosZ genes was also high at the agricultural sites, the ratio of nosZ genes to nir genes was significantly higher in wetland sites indicating that these sites could act as a sink of N2O. These findings suggest that wetland restoration could be a promising natural climate solution not only for carbon sequestration but also for reduced N2O emissions.


Subject(s)
Microbiota , Wetlands , Denitrification , Nitrogen , Nitrogen Cycle , Nitrous Oxide/analysis , Soil , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...